Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Infect Control Hosp Epidemiol ; : 1-3, 2022 May 04.
Article in English | MEDLINE | ID: covidwho-2324330

ABSTRACT

We used a self-reporting system to compare symptom frequency of hospital personnel with coronavirus disease 2019 before and after the emergence of the Omicron variant. Omicron was more likely to result in asymptomatic carriage (7% vs 12%; P = .009), and fewer symptoms were observed in those with booster vaccination.

2.
Clin Microbiol Infect ; 28(12): 1624-1628, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2035886

ABSTRACT

OBJECTIVE: To describe effectiveness of mRNA vaccines by comparing 2-dose (2D) and 3-dose (3D) healthcare worker (HCW) recipients in the setting of Omicron variant dominance. Performance of 2D and 3D vaccine series against SARS-CoV-2 variants and the clinical outcomes of HCWs may inform return-to-work guidance. METHODS: In a retrospective study from December 15, 2020 to January 15, 2022, SARS-CoV-2 infections among HCWs at a large tertiary cancer centre in New York City were examined to estimate infection rates (aggregated positive tests / person-days) and 95% CIs over the Omicron period in 3D and 2D mRNA vaccinated HCWs and were compared using rate ratios. We described the clinical features of post-vaccine infections and impact of prior (pre-Omicron) COVID infection on vaccine effectiveness. RESULTS: Among the 20857 HCWs in our cohort, 20,660 completed the 2D series with an mRNA vaccine during our study period and 12461 had received a third dose by January 15, 2022. The infection rate ratio for 3D versus 2D vaccinated HCWs was 0.667 (95% CI 0.623, 0.713) for an estimated 3D vaccine effectiveness of 33.3% compared to two doses only during the Omicron dominant period from December 15, 2021 to January 15, 2022. Breakthrough Omicron infections after 3D + 14 days occurred in 1,315 HCWs. Omicron infections were mild, with 16% of 3D and 11% 2D HCWs being asymptomatic. DISCUSSION: Study demonstrates improved vaccine-derived protection against COVID-19 infection in 3D versus 2D mRNA vaccinees during the Omicron surge. The advantage of 3D vaccination was maintained irrespective of prior COVID-19 infection status.


Subject(s)
COVID-19 , Influenza Vaccines , Influenza, Human , Humans , New York City/epidemiology , SARS-CoV-2/genetics , Influenza, Human/prevention & control , RNA, Messenger/genetics , COVID-19/epidemiology , COVID-19/prevention & control , Retrospective Studies , Health Personnel
3.
Clin Infect Dis ; 75(1): e774-e782, 2022 Aug 24.
Article in English | MEDLINE | ID: covidwho-2017767

ABSTRACT

BACKGROUND: Vaccine-induced clinical protection against severe acute respiratory syndrome coronavirus 2 (SARS CoV-2) variants is an evolving target. There are limited genomic level data on SARS CoV-2 breakthrough infections and vaccine effectiveness (VE) since the global spread of the B.1.617.2 (Delta) variant. METHODS: In a retrospective study from 1 November 2020 to 31 August 2021, divided as pre-Delta and Delta-dominant periods, laboratory-confirmed SARS CoV-2 infections among healthcare personnel (HCP) at a large tertiary cancer center in New York City were examined to compare the weekly infection rate-ratio in vaccinated, partially vaccinated, and unvaccinated HCP. We describe the clinical and genomic epidemiologic features of post-vaccine infections to assess for selection of variants of concern (VOC)/variants of interest (VOI) in the early post-vaccine period and impact of B.1.617.2 (Delta) variant domination on VE. RESULTS: Among 13658 HCP in our cohort, 12379 received at least 1 dose of a messenger RNA (mRNA) vaccine. In the pre-Delta period overall VE was 94.5%. Whole genome sequencing (WGS) of 369 isolates in the pre-Delta period did not reveal a clade bias for VOC/VOI specific to post-vaccine infections. VE in the Delta dominant phase was 75.6%. No hospitalizations occurred among vaccinated HCP in the entire study period, compared to 17 hospitalizations and 1 death among unvaccinated HCP. CONCLUSIONS: Findings show high VE among HCP in New York City in the pre-Delta phase, with moderate decline in VE post-Delta emergence. SARS CoV-2 clades were similarly distributed among vaccinated and unvaccinated infected HCP without apparent clustering during the pre-Delta period of diverse clade circulation. Strong vaccine protection against hospitalization was maintained through the entire study period.


Subject(s)
COVID-19 , SARS-CoV-2 , COVID-19/epidemiology , COVID-19/prevention & control , Delivery of Health Care , Genomics , Humans , New York City/epidemiology , RNA, Messenger , Retrospective Studies , SARS-CoV-2/genetics
4.
Clin Infect Dis ; 74(9): 1579-1585, 2022 05 03.
Article in English | MEDLINE | ID: covidwho-1707816

ABSTRACT

BACKGROUND: There is limited information on the risk of hospital-acquired coronavirus disease 2019 (COVID-19) among high-risk hospitalized patients after exposure to an infected patient or healthcare worker (HCW) in a nonoutbreak setting. METHODS: This study was conducted at a tertiary care cancer center in New York City from 10 March 2020 until 28 February 2021. In early April 2020, the study institution implemented universal severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) testing at admission and retesting every 3 days through the hospital stay. Contact tracing records were reviewed for all exposures to SARS-CoV-2 positive patients and HCWs. RESULTS: From 10 March 2020 to 28 February 2021, 11 348 unique patients who were SARS-CoV-2 polymerase chain reaction (PCR) negative at the time of admission underwent 31 662 postadmission tests during their hospitalization, and 112 tested positive (0.98%). Among these, 49 patients housed in semiprivate rooms during admission resulted in 74 close contacts and 14 secondary infections within 14 days, for an overall attack rate of 18.9%. Among those exposed to a roommate undergoing an aerosol-generating procedure (AGP), the attack rate was 35.7%. Whole genome sequencing (WGS) corroborated transmission in 6/8 evaluated pairs. In addition, three transmission events occurred in 214 patients with significant exposure to 105 COVID-19 positive healthcare workers (1.4%). CONCLUSIONS: The overall risk of hospital-acquired COVID-19 is low for hospitalized cancer patients, even during periods of high community prevalence. However, shared occupancy with an unrecognized case is associated with a high secondary attack rate in exposed roommates.


Subject(s)
COVID-19 , Neoplasms , COVID-19/diagnosis , COVID-19/epidemiology , Contact Tracing , Delivery of Health Care , Health Personnel , Humans , Infectious Disease Transmission, Patient-to-Professional , Neoplasms/epidemiology , SARS-CoV-2
5.
Nat Med ; 26(8): 1218-1223, 2020 08.
Article in English | MEDLINE | ID: covidwho-616643

ABSTRACT

As of 10 April 2020, New York State had 180,458 cases of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and 9,385 reported deaths. Patients with cancer comprised 8.4% of deceased individuals1. Population-based studies from China and Italy suggested a higher coronavirus disease 2019 (COVID-19) death rate in patients with cancer2,3, although there is a knowledge gap as to which aspects of cancer and its treatment confer risk of severe COVID-194. This information is critical to balance the competing safety considerations of reducing SARS-CoV-2 exposure and cancer treatment continuation. From 10 March to 7 April 2020, 423 cases of symptomatic COVID-19 were diagnosed at Memorial Sloan Kettering Cancer Center (from a total of 2,035 patients with cancer tested). Of these, 40% were hospitalized for COVID-19, 20% developed severe respiratory illness (including 9% who required mechanical ventilation) and 12% died within 30 d. Age older than 65 years and treatment with immune checkpoint inhibitors (ICIs) were predictors for hospitalization and severe disease, whereas receipt of chemotherapy and major surgery were not. Overall, COVID-19 in patients with cancer is marked by substantial rates of hospitalization and severe outcomes. The association observed between ICI and COVID-19 outcomes in our study will need further interrogation in tumor-specific cohorts.


Subject(s)
Coronavirus Infections/mortality , Neoplasms/mortality , Pandemics , Pneumonia, Viral/mortality , Adolescent , Adult , Aged , Betacoronavirus/pathogenicity , COVID-19 , China/epidemiology , Coronavirus Infections/complications , Coronavirus Infections/pathology , Coronavirus Infections/virology , Female , Hospitalization , Humans , Italy/epidemiology , Male , Middle Aged , Neoplasms/complications , Neoplasms/pathology , Neoplasms/virology , Pneumonia, Viral/complications , Pneumonia, Viral/pathology , Pneumonia, Viral/virology , Risk Factors , SARS-CoV-2 , Severity of Illness Index , United States/epidemiology , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL